Molecular Testing and Targeted Therapies in NSCLC

Millie Das, MD Clinical Associate Professor, Stanford University Chief, Oncology, VA Palo Alto Health Care System

Consultant: Beigene, Astra Zeneca, Sanofi/Genzyme, Eurofins, Janssen, Genentech (uncompensated), Bristol Myer Squibb (uncompensated)

Research: Merck, CellSight, Genentech, Novartis, Abbvie, United Therapeutics, Varian, Verily, Celgene

Agenda

- Role of biomarkers in therapy selection for lung cancer
- Molecular testing recommendations in NSCLC
- Updated data for therapy selection

 -EGFR
 -MET
 -NTRK
 -ALK
 -Kras
 -RET
 -ROS1
 -HER2

Identification of driver mutations leads to treatment with targeted therapies in metastatic NSCLC

Treatment Options: Overview

- Targeted therapies in the metastatic setting result in robust responses and prolonged disease control for NSCLC but cannot cure- RESISTANCE IS INEVITABLE
- For patients without a targetable mutation, standard firstline treatment recommendation is chemotherapy + IO, regardless of PDL-1 status
- Immunotherapy alone can be considered for patients with PDL-1>=50%

Treatment considerations

Who should get molecular testing?

- All patients with metastatic <u>non-squamous</u> NSCLC
- Consider also in patients with metastatic squamous NSCLC

Timing of Treatment

• Wait for rapid molecular testing (EGFR, ALK, ROS1, PDL-1) results prior to treatment initiation (usually 1 week)

EGFR Mutations

- 15-20% of NSCLC
 - More frequently seen in Asian, never or light smokers
- Most common sensitizing mutations are exon 19 del and L858R
- Firstline treatment with osimertinib in stage IV (FLAURA)
- Brain metastases seen commonly with good CNS penetration of osimertinib
- Exon 20 insertions are generally resistant to classical TKIs with some variant exceptions
- Resistance to EGFR TKIs is common

ADAURA TRIAL:

Adjuvant osimertinib improves DFS in early stage II/IIIA EGFR+ NSCLC

Primary endpoint: DFS in patients with stage II/IIIA disease

FDA approved osimertinib as adjuvant treatment in Dec 2020 in patients with early stage resected EGFR+ NSCLC

PRESENTED AT: 2020 ASCO ANNUAL MEFTING Stides are the property of the outhout permission required for reuse.

PRESENTED BY: Roy S. Herbst

ADAURA data cut-off. January 17, 2020 Median follow-up: osimerfinib 22.1, placebo: 15.0 months DFS by investigator assessment, Tick marks indicate censored data NC, not caudable, INR, not reacher

FLAURA TRIAL: Osimertinib Improves PFS & OS Compared to Older Generation EGFR TKIs in Stage IV EGFR+ NSCLC

PFS No. of Median Progression-free Survival Patients (95% CI) mo 0.9 Osimertinib 18.9(15.2-21.4)279 Standard EGFR-TKI 277 10.2 (9.6 - 11.1)0.8 Hazard ratio for disease progression or death, 0.46 (95% CI, 0.37-0.57) Probability of Overall Survival 0.7 P<0.001 Probability of Progression-free Survival 1.0 0.6 0.8 0.5-0.6 0.4 Osimertinib 0.4 0.3 mo 0.2 0.2-Standard EGFR-TKI 0.1 0.0 EGFR-TKI 15 18 0 3 6 9 12 21 24 27 0.0 Month 0 9 12 15 No. at Risk Osimertinib 279 262 233 210 178 139 71 26 0 No. at Risk 2

17

2 0

OS

197

152

107

78

37

10

0

Osimertinib

Standard

EGFR-TKI

277

239

Ramalingam S, et al. N Engl J Med. 2020;382(1):41-50.

Comparator EGFR-TKI 277 263 252 239 219 205 182 165 148 138 131 121 110 101 72 40

Resistance to targeted therapy inevitable & resistance mechanisms more challenging with next generation drugs

Dominant mechanism of resistance for 1st generation EGFR TKIs erlotinib or gefitinib

Yu H et al. Clin Cancer Res. 2013 Apr 15;19(8):2240-7.

Heterogeneous & multiple simultaneous mechanisms of resistance to 3rd generation EGFR TKI osimertinib CHRYSALIS: Amivantamab in Post-platinum NSCLC Patients With *EGFR* Exon20ins Mutations *Fully humanized, bispecific IgG1 antibody targeting EGFR/cMET*

Response	Efficacy Population (n = 81)
ORR, % (95% CI)	40 (29-51)
CBR,* % (95% CI)	74 (63-83)
Best response, n (%)	
• CR	3 (4)
• PR	29 (36)
• SD	39 (48)
• PD	8 (10)
• NE	1 (1)
Median DoR, mos (95% CI)	11.1 (6.9-NR)

*CBR = CR, PR, of SD at \geq 2 disease assessments.

[†]Does not include 9 patients with race not reported and multiple race.

May 2021: FDA approved amivantamab for patients with NSCLC who harbor EGFR exon 20 insertion mutation and whose disease has progressed on or after platinum-based chemotherapy

Ongoing phase III PAPILLON trial

 Firstline amivantanab + chemo vs. chemo alone in EGFR exon 20 ins patients

CHRYSALIS: Amivantamab in Post-platinum NSCLC Patients With *EGFR* Exon20ins Mutations

	Safety Population (n = 114), n (%)	Patients Treated at the RP2D (n=258), n (%)
Any AE	113 (99)	257 (100)
Grade ≥ 3 AE	40 (35)	101 (39)
Serious AE	34 (30)	79 (31)
AE leading to death	8 (7)	13 (5)
AE leading to discontinuation	11 (10)	17 (7)
AE leading to dose reduction	15 (13)	26 (10)
AE leading to dose interruption*	40 (35)	88 (34)

- Safety profile consistent with AEs resulting from EGFR and MET pathway inhibition
- Infusion-related reactions primarily occurred during first infusion (94% of cases)
- Should be withheld if patients develop symptoms of interstitial lung disease

*Excludes infusion-related reactions.

Mobocertinib in Post-platinum NSCLC Patients With EGFR Exon20ins Mutations

Oral small-molecule TKI that selectively target EGFR ex20ins mutations

	No. (%)
Outcome	PPP cohort (n = 114)
IRC-assessed confirmed objective response ^b	
Patients, No. (%) [95% CI]	32 (28) [<mark>2</mark> 0-37]
Complete response	0
Partial response	32 (28)
Stable disease ^c	57 (50)
Not evaluable	12 (11)
Confirmed disease control rate, No. (%) [95% CI] ^d	89 (78) [69-85]
Investigator-assessed confirmed objective response ^b	
Patients, No. (%) [95% CI]	40 (35) [26-45]
Complete response	1 (<1)
Partial response	39 (34)
Stable disease ^c	49 (43)
Not evaluable	11 (10)
Confirmed disease control rate, No. (%) [95% CI] ^d	89 (78) [69-85]
Duration of response in confirmed responders ^e	
IRC-assessed	
No.	32
Median (95% CI), mo	17.5 (7.4-20.3)
Investigator-assessed	
No.	40
Median (95% CI), mo	11.2 (5.6-NR)

Sept 2021: FDA approved mobocertinib for patients with NSCLC who harbor EGFR exon 20 insertion mutation and whose disease has progressed on or after platinum-based chemotherapy EGFR Targeted Therapy: Summary

- Recent ADAURA trial is practice changing
 - Test all early stage patients for EGFR!
- Strategies in development to delay or overcome resistance to osimertinib
- Usually chemotherapy is administered after resistance to osimertinib develops
- Identifying specific resistance mutations in each patient's tumor (i.e., tissue biopsy, liquid biopsy) and tailoring subsequent approach
- Newly approved drugs for EGFR exon 20 ins
 - Amivantanab
 - Mobocertinib

ALK Targeted Therapy

3-5% of NSCLC

- More frequent in males
- More frequent in never or light smokers
- Brain metastases commonly seen

Frontline treatment options

- Alectinib
- Brigatinib (approved May 2020)
- Lorlatinib (approved March 2021)

Other ALK inhibitors

• Ceritinib, Crizotinib

ALEX Phase III TRIAL: Alectinib superior to Crizotinib in Untreated *ALK*-Positive NSCLC

		Log-rank	Hazard	ratio	Interaction test
Name	Level	P value	Hazard ratio	95% CI	P value (likelihood ratio)
All	n/a	0.0609	0.70	(0.48-1.02)	
Age group (years)	< 65	0.1481	0.73	(0.48-1.12)	0.6768
	≥ 65	0.2189	0.63	(0.30-1.33)	
Sex	Female	0.3020	0.76	(0.45-1.28)	0.6923
	Male	0.1155	0.66	(0.39–1.11)	
Race	Asian	0.3298	0.74	(0.40-1.36)	0.8575
	Non-Asian	0.1161	0.69	(0.43–1.10)	
Smoking status n	= 17 Active smoker	0.4126	1.97	(0.38–10.20)	0.5471
-	Non-smoker	0.1181	0.68	(0.42-1.11)	
	Past smoker	0.1339	0.62	(0.33–1.17)	
ECOG PS	0	0.1266	0.52	(0.22-1.22)	0.4636
	1	0.0960	0.68	(0.44-1.07)	
n	= 20 2	0.6440	1.30	(0.43-3.90)	

FDA approved alectinib in the first line for patients with ALK-positive NSCLC in November 2017

Peters S, et al.. J Clin Oncol. 2020;38(15):9518. Mok T, et al. Ann Oncol. 2020;31(8):1056-1064.

ALTA-1L Phase III TRIAL: Brigatinib superior to Crizotinib in Untreated *ALK*-Rearranged NSCLC

Camidge DR, et al. J Clin Oncol. 2020;38(31):3592-3603.

CROWN Phase III TRIAL: Lorlatinib superior to Crizotinib in Advanced *ALK*-Positive NSCLC

FDA approved lorlatinib for patients with NSCLC whose tumors are *ALK*-positive in March 2021 ALK Targeted Therapy: Summary

- Multiple first line FDA approved ALK TKI options
- Alectinib is generally preferred first line given favorable side effect profile and high CNS penetration
- Resistance to ALK TKIs occurs
- Can use other ALK TKIs at the time of disease resistance (brigatinib, lorlatinib)

ROS1 Targeted Therapy

Found in 1% of NSCLC

- More common in light or never smokers
- Longer median OS of patients

Targeted therapies

- Crizotinib
- Entrectinib (approved Aug 2019)
- Ceritinib

Entrectinib in *ROS1* Fusion-positive NSCLC Integrated Analysis of 3 Phase I/II Trials (STARTRK-1, ALKA, STARTRK-2)

Drilon A, et al. Lancet Oncol. 2020;21(2):261-270.

MET Targeted Therapy

- MET alterations occur is many solid malignancies, including NSCLC (gene amplification and exon 14 skipping mutations)
- MET antibodies and TKIs being investigated
- MET amplification seen in cases of EGFR-TKI resistance
- Capmatinib and tepotinib are FDA approved first line treatment options for patients MET exon 14 skipping mutations

GEOMETRY mono-1 TRIAL: Subsequent line Capmatinib effective in *MET*ex14—mutated NSCLC

VISION TRIAL: Tepotinib targets MET Exon 14 skipping mutations

February 2021: FDA granted accelerated approval for tepotinib in patients with mNSCLC harboring MET exon 14 skipping alterations

Tepotinib
N=87ORR45%mDoR1.7mos

MET Targeted Therapy: Summary

- Capmatinib and tepotinib are standard of care 1st line treatment for MET exon 14 skipping mutations
- Other MET targeted drugs are in clinical development

KRAS targeted therapy

- KRAS is the common mutation in lung adenoCA (25%)
- KRAS G12C mutations found in 13% of lung adenoCA
- Up until recently, KRAS mutations were not felt to be targetable in lung cancer

Sotorasib for Patients With Advanced KRAS^{G12C}-Mutated Advanced NSCLC Previously Treated With Standard Therapies Phase II Trial

Tumor Response to Sotorasib Therapy According to Independent Central Review		
Variable	Patients (N = 124)	
ORR — % (95% CI)†	37.1 (28.646.2)	
Disease control — % (95% CI)‡	80.6 (72.6–87.2)	
Best response — no. (%)		
CR	4 (3.2)	
PR	42 (33.9)	
SD	54 (43.5)	
PD	20 (16.1)	
Could not be evaluated	2 (1.6)	
Missing scan	2 (1.6)	
Median duration of objective response (95% CI) — mo§	11.1 (6.9–NE)	
Kaplan-meier estimate of objective response (95% Cl) — %		
At 3 mo	90.5 (76.7–96.3)	
At 6 mo	70.8 (54.3–82.2)	
At 9 mo	57.3 (40.4–71.0)	

May 2021: FDA approved sotorasib for KRAS G12C-mutated NSCLC for patients who have received at least one prior systemic therapy

Adagrasib

- Phase I/II study (N=110; n = 79 with NSCLC [51 evaluable])
 - Efficacy in NSCLC
 - CR/PR: 45% of NSCLC
 - Disease control (CR/PR/SD): 96%
 - Safety
 - Most common AEs: nausea, diarrhea, vomiting, fatigue, and increased liver enzymes
 - Grade ≥3 AEs: 30%
 - 2 deaths (pneumonitis, cardiac failure)

In June 2021, adagrasib earned a breakthrough therapy designation from the FDA for patients with KRAS G12C– mutant NSCLC

KRAS targeted therapy: Summary

- Sotorasib is a viable second line therapy option with KRAS G12 mutated NSCLC (chemo+IO still firstline)
- No targeted treatment options for other KRAS non-G12C mutations

HER2 (ERBB2) Targeted Therapy

- Currently no standard therapies targeting HER2 pathway in NSCLC
 - Approved therapies in HER2+ gastric and breast cancers
- No clear correlation between HER2 overexpression, amplification, or mutation (not mutually exclusive)
 - HER2 mutations in 2-4% (most exon 20 ins)
 - HER2 amplification in 10-20%
 - HER2 overexpression in 2.4-38%
- HER2 alterations can represent primary driver or mechanism of acquired resistance

Jebbink et al. Cancer Treat Rev 2020;86:101996 Rolfo et al. Cancer Discov 2020 May 10(50):643-645

DESTINY-Lung01 Trial: Trastuzumab deruxtecan (HER2 Targeted Therapy)

• International, open-label, multicohort phase II trial

 Patients with unresectable/metastatic nonsquamous NSCLC that is HER2 expressing or with a *HER2*activating mutation
 R/R to standard therapy
 No previous HER2targeted therapy (pan-HER TKIs allowed)
 ECOG PS 0-1

(planned N = 170)

Primary endpoint: confirmed ORR per ICR

Secondary endpoints: DoR, PFS, OS

DESTINY Lung-01 TRIAL:

Trastuzumab deruxtecan shows response in HER2-mutant NSCLC

DESTINY Lung-01 TRIAL: PFS and OS of Trastuzumab Deruxtecan in HER2-mutant NSCLC

Aug 2022: FDA granted accelerated approval to trastuzumab deruxtecan for unresectable/metastatic NSCLC patients with HER2 mutations who have received a prior systemic therapy

HER2 Targeted Therapy

	First	Overall response rate	Overall response rate
	author	HER2 mutation	HER2 amplification
Dacomitinib	Kris	3/26 (12%)	0/4 (0%)
Neratinib	Hyman	1/26 (4%)	NA
Neratinib	Gandhi	0/17 (0%)	NA
Neratinib + temsirolimus	Gandhi	8/43 (19%)	NA
Afatinib	Smit	0/13 (0%)	NA
Afatinib	Lai	3/22 (14%)	NA
Trastuzumab	Gatzemeier	NA	NA*

* Negative randomized phase 2 trial cisplatin/gemcitabine ± trastuzumab in HER2 IHC2+/3+ lung cancers.

• TKIs are minimally effective with overall low response rates

 Poziotinib, a more potent inhibitor of EGFR and HER2 exon 20 mutations, being studied in phase II trial

HER2 Targeted Therapy: Poziotinib

IASLC ((1) 2020 World Conference on Lung Cancer Singapore Primary Efficacy and Safety

- Cohort 2 (2L HER2 exon 20) primary endpoint was met
- Median age 61yrs; median prior therapy = 2 (1-9); 66% females; 67% non-smokers; 13% stable brain metastases at entry
- Common Grade 3 TRAEs: Diarrhea (26%), Rash (29%), mucosal inflammation (10%)

	2L EGFR Exon 20 (N=115)	2L HER2 Exon 20 (N=90)
ORR (n), [95% CI]	14.8% (17) [8.9, 22.6%]	27.8% (25) [18.9, 38.2%]
Unconfirmed ORR (n),	19.1% (22)	31.1% (28)
[95% CI]	[12.4, 27.5%]	[21.8, 41.7%]
DCR (n),	68.7% (79)	70.0% (63)
[95% Cl]	[59.4, 77.0%]	[59.4, 79.2%]
DoR, median (months),	7.4	5.1
[95% CI]	[3.7, 9.7]	[4.2, 5.5]
PFS, median (months),	4.2	5.5
[95% CI]	[3.7, 6.6]	[3.9, 5.8]

wclc2020.IASLC.com | #WCLC20

CONQUERING THORACIC CANCERS WORLDWIDE

Cornelissen R et al. Presented at: 2020 World Conference on Lung Cancer Singapore; January 28-31; Virtual Abstract MA11.04

HER2 Targeted Therapy: Neratinib

Study design: Phase 2 trials of neratinib in HER2-mutated lung cancers

SUMMIT (PUMA-NER-5201): Open-label phase 2 basket study in HER2-mutant tumors

Li B et al. Presented at 2020 World Conference on Lung Cancer Singapore; January 28-31; Virtual Abstract FP14.15

HER2 Targeted Therapy: Summary Recent FDA approval of trastuzumabderuxtecan

• Existing and emerging small molecule TKIs are only modestly active

 Poziotinib demonstrates increased activity against HER2 mutated NSCLC compared to other TKIs

Other less common actionable targets: NTRK, RET

NTRK Targeted Therapy

NTRK fusions are found across multiple cancer histologies

1500-5000 patients in United States annually

LOXO-TRK-14001/SCOUT/NAVIGATE TRIALS: Larotrectinib with efficacy in solid tumors with NTRK gene fusion

Median duration of response not reached (range 3.9 + to 25.9 + months) (median follow-up of 12.8 months) November 2018: FDA approved larotrectinib for solid tumors harboring NTRK gene fusion

Farago et al presented at World Conference on Lung Cancer 2019

ALKA-372-001/STARTRK-1/STARTRK-2 TRIALS: Entrectinib with efficacy in solid tumors with NTRK gene fusion

- Pooled analysis of 3 phase I/II trials
- 10 different tumor types
- 31 of 54 patients had objective response
 - 7% CR
 - 50% PR
- Most common AEs
 - Increased weight
 - Anemia
 - Cognitive disorder

August 2019: FDA approved entrectinib for solid tumors harboring NTRK gene fusion NTRK Targeted Therapies: Summary

- NTRK is an uncommon mutation in NSCLC (<0.5%)
- NTRK inhibitors larotrectinib and entrectinib are FDA approved for NTRK positive solid tumors, including NSCLC
- High response rates (>70%) and generally well tolerated

RET Alterations

- Seen in 1-2% of NSCLC
- Associated with high risk of CNS metastases
- Multi-kinase inhibitors target various kinases and other receptors (including RET)
 - Sunitinib, sorafenib, vandetanib, cabozantinib, regorafenib, lenvatinib, alectinib
 - Limited clinical benefit
 - Dose-limiting off target toxic effects
- Recent FDA approvals of selpercatinib and pralsetinib

LIBRETTO-001 TRIAL: Selpercatinib effective in *RET*-fusion-positive NSCLC

- 105 patients with RET positive NSCLC
- ORR= 64%
- Intracranial response: 91%
 - Noted in 10/11 patients with CNS mets
- Most common AEs
 - HTN
 - Increased AST

May 2020: FDA accelerated approval of selpercatinib for patients for RET+ NSCLC Sept 2022: FDA approved selpercatinib for patients for advanced or metastatic tumors with RET gene fusion

ARROW TRIAL: Pralsetinib effective in *RET*-fusion-positive NSCLC

- Phase I/II study
- 233 patients with RET positive NSCLC
 - 92 patients with prior platinumbased chemo (ORR= 61%)
 - 29 patients were treatment naïve (ORR= 70%)
- Most common AEs
 - Neutropenia
 - HTN
 - Anemia

December 2020: FDA accelerated approval for pralsetinib for patients with RET+ NSCLC

- Shrinkage of CNS mets noted in all 9 patients with measurable intracranial metastases
 - 5/9 patients had intracranial response (with 3 CRs)

RET Targeted Therapy: Summary

- RET fusions seen in 1-2% of NSCLC
- Associated with high risk of CNS metastases
- Selpercatinib and pralsetinib are newly FDA approved options for RET-rearranged NSCLC

Conclusions

- Obtain sufficient tissue for molecular testing, even in early stage patients
- Driver mutations (even rare subsets) are being identified on NGS panels in NSCLC tumor specimens
- Novel targeted therapeutics offer better outcomes with many recent FDA approvals
- Cancer Moonshot initiative
 - Accelerate research, making more therapies available through precision oncology
 - Bench to bedside