Brain Metastasis and

Leptomeningeal Carcinomatosis

Objectives

- To be able to localize 3 symptoms, and their respective locations in the brain
- Name and understand the primary prognostic indicator for patients with brain metastasis and leptomeningeal disease
- Understand what differentiates the treatment goals for a patient with good prognosis vs a poor prognosis patient
- Name approaches to each form of treatment-Surgery, Radiation, and chemotherapy

Introduction

- Brain metastasis and leptomeningeal disease are lethal
- Untreated brain metastasis from solid tumors has a prognosis of 1-2 months
- Once diagnosed leptomeningeal disease has a prognosis of 2 weeks–2 months

The Lobes of the Brain

Brain Metastasis

- Brain metastasis is the most common intracranial tumor in adults
- In systemic malignancy brain metastasis occurs in 10-30% of adults, and 6-10% of children
- Incidences increasing
 - Improved imaging with MRI
 - Improve control of extracranial disease

The Tentorium Cerebelli

Common Malignancies Responsible for Brain Metastasis

Adults

- Lung
- Breast
- Kidney
- Colorectal
- Melanoma

Children

- Sarcomas
- Germ Cell tumors
- Neuroblastoma

Clinical Manifestations

- Headache
 - 40-50% of patients
 - Early morning headache
- Focal neurologic dysfunction
 - 20-40% pf patients
 - Hemiparesis most common
- Cognitive dysfunction
 - 30-35% of patients
- Seizures
- Stroke
- Others

Imaging

- Magnetic resonance imaging with contrast
- More sensitive than non contrast MRI or CT scan

Prognostic Indicators

- Performance status
- Age younger than 65
- Control of extracranial disease
- Underlying cancer histology and genealogy

Karnofsky Performance Scale

General category	%	Specific criteria
Able to carry on normal activity	100	Normal general status - No complaint - No evidence of disease
No special care needed	90	Able to carry on normal activity - Minor sign of symptoms of disease.
	80	Normal activity with effort, some signs or symptoms of disease.
Unable to work	70	Able to care for self, unable to carry on normal activity or do work
Able to live at home and care for most personal needs	60	Requires occasional assistance from others, frequent medical care
Various amount of assistance needed	50	Requires considerable assistance from others; frequent medical care.
Unable to care for self	40	Disabled, requires special care and assistance
Requires institutional or hospital care or equivalent	30	Severely disabled, hospitalization indicated, death not imminent
Disease may be rapidly progressing	20	Very sick, hospitalization necessary, active supportive treatment necessary
Terminal states	10	Moribund
	0	Dead

Treatments

- Surgery
- Radiation
- Chemotherapy

Surgery

- There is a single metastatic lesion
- Large symptom producing tumors
- Or if there is a uncertain diagnosis, excisional biopsy is considered

Eloquent Areas of the Brain

Radiation Therapy

- Many who undergo surgery get local radiation therapy to the surgical bed
- For those with a limited number of small brain metastasis, they may have stereotactic radiosurgery alone
- Whole brain radiation therapy

Chemotherapy

- Chemotherapy is based on the primary site of cancer
 - Breast
 - Lung
 - Melanoma

Surveillance

- Imaging
 - 1 month after initial therapy, and then every 2-3 months after
 - Up to 50% progress within the first 6 months to one year

Recurrence

- Pseudo-progression
- Recurrence
 - Additional surgery a possible option
 - Additional radiation therapy is unlikely
 - Chemotherapy

Leptomeningeal Disease

- Malignant cancer cells in the CSF
- Rare and devastating complication of advanced cancer
- Diagnosed in approximately 5% of patients with metastatic cancer
- Most common cancers to result in leptomeningeal disease—breast, lung, melanoma, GI cancers
- Primary brain tumors may also lead to the leptomeningeal disease- high-grade astrocytomas, oligodendroglioma, medulloblastoma, , pineoblastoma
- The development may be influenced by treatment

Pathophysiology/review

Cerebrospinal fluid

Flow of Cerebrospinal Fluid

Pathogenesis

Clinical Manifestations

- Mass effect
- Cranial nerves and spinal root dysfunction
- Invasion of the brain parenchyma
- Disruption of the blood brain barrier

Signs and symptoms

- Any neurological symptom may be related to LM
- Symptoms present acutely and progress within days to weeks
- Multifocal neurological signs and symptoms
- Be aware of those that present with a single symptom

Diagnostics

- Brain MRI
- CSF analysis through lumbar puncture

Leptomeningeal contrast enhancement

Leptomeningeal Contrast Enhancement

Treatment Goals

- Stabilizing or improving neurological function
- Prolonging survival
- Palliation of symptoms

Karnofsky Performance Scale

General category	%	Specific criteria
Able to carry on normal activity	100	Normal general status - No complaint - No evidence of disease
No special care needed	90	Able to carry on normal activity - Minor sign of symptoms of disease.
	80	Normal activity with effort, some signs or symptoms of disease.
Unable to work	70	Able to care for self, unable to carry on normal activity or do work
Able to live at home and care for most personal needs	60	Requires occasional assistance from others, frequent medical care
Various amount of assistance needed	50	Requires considerable assistance from others; frequent medical care.
Unable to care for self	40	Disabled, requires special care and assistance
Requires institutional or hospital care or equivalent	30	Severely disabled, hospitalization indicated, death not imminent
Disease may be rapidly progressing	20	Very sick, hospitalization necessary, active supportive treatment necessary
Terminal states	10	Moribund
	0	Dead

Poor Risk Patients

- Patients with multiple serious/fixed neurological deficits
- Extensive systemic disease even with active treatment
- Focus is largely on palliation of symptoms

Treatments

- Radiation therapy
- Analgesics for pain
- Corticosteroids
- Anticonvulsants
- VP shunting
- SSRIs

Good Risk Patients

- Those without fixed neurological deficits
- Minimal systemic disease
- Cancer with reasonable treatment options
- Goal is direct tumor control

Treatments

- Surgery
- Radiation
- Chemotherapy

Surgery

- Treatment of increased intracranial pressure
 - For signs of increased intracranial pressure initially treat with steroids
 - VP shunting

Radiation Therapy

- Used to treat bulkier symptomatic areas of disease
- Appears to be more effective at relieving symptoms when compared to chemotherapy
- Standard radiation dose for leptomeningeal disease includes 30-36 Gy, in 3 Gy daily fractions
- Major adverse effects during or after focal radiation therapy unusual
- With large extension radiation fields common adverse effects include myelosuppression, mucositis, esophagitis, leukoencephalopathy

Intrathecal chemotherapy

- Mainstay of treatment with leptomeningeal metastasis
- It may be delivered via lumbar puncture versus Ommaya reservoir
- Methotrexate is the chemotherapy most often used for the leptomeningeal disease

Systemic Chemotherapy

- There are several therapeutic chemotherapy agents provide therapeutic concentration within the CSF when given at appropriate doses
- Advantages
 - Surgery risks
 - Obstruction normal CSF flow
 - Increased availability of cytotoxic agents
 - Uniform drug distribution

Common Systemic Chemotherapy Agents

- High-dose methotrexate with leucovorin rescue
- High-dose cytarabine
- Capecitabine
- Tyrosine kinase inhibitors such as erlotinib
- Anaplastic lymphoma kinase inhibitors such as Crizotinib

Investigational Therapies

- IT etoposide
- Intrathecal trastuzumab
- Intrathecal rituximab

Prognosis

- Despite aggressive therapy even good risk patients with leptomeningeal disease have limited survival
- Average survival with aggressive treatment is 3-4 months
- Tumor histology and molecular subtype may influence prognosis
- Performance status and control of systemic disease are important factors

QUIZ

- Questions to ask yourself
 - What lobe of the brain is this lesion in?
 - Would you resect the tumor?
 - What part of the brain would receive radiation?
 - Name 2 symptoms the patient may experience with a metastatic lesion in this area.

References

Bindal RK, Sawaya R, Leavens ME, et al. Reoperation for recurrent metastatic brain tumors. J Neurosurg 1995; 83:600.

Burch PA, Grossman SA, Reinhard CS. Spinal cord penetration of intrathecally administered cytarabine and methotrexate: a quantitative autoradiographic study. J Natl Cancer Inst 1988; 80:1211.

Chamberlain MC. Combined-modality treatment of leptomeningeal gliomatosis. Neurosurgery 2003; 52:324.

Chamberlain MC, Tsao-Wei D, Groshen S. Neoplastic meningitis-related encephalopathy: prognostic significance. Neurology 2004; 63:2159.

Chang EL, Maor MH. Standard and novel radiotherapeutic approaches to neoplastic meningitis. Curr Oncol Rep 2003; 5:24

Delattre JY, Krol G, Thaler HT, Posner JB. Distribution of brain metastases. Arch Neurol 1988; 45:741.

Grossman SA, Reinhard CS, Loats HL. The intracerebral penetration of intraventricularly administered methotrexate: a quantitative autoradiographic study. J Neurooncol 1989; 7:319.

Grossman SA, Krabak MJ. Leptomeningeal carcinomatosis. Cancer Treat Rev 1999; 25:103.

Hitchins RN, Bell DR, Woods RL, Levi JA. A prospective randomized trial of single-agent versus combination chemotherapy in meningeal carcinomatosis. J Clin Oncol 1987; 5:1655.

Kaplan JG, DeSouza TG, Farkash A, et al. Leptomeningeal metastases: comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J Neurooncol 1990; 9:225.

Lamovec J, Zidar A. Association of leptomeningeal carcinomatosis in carcinoma of the breast with infiltrating lobular carcinoma. An autopsy study. Arch Pathol Lab Med 1991; 115:507.

References Cont.

Laufman LR, Forsthoefel KF. Use of intrathecal trastuzumab in a patient with carcinomatous meningitis. Clin Breast Cancer 2001; 2:235.

Mahajan A, Ahmed S, McAleer MF, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol 2017; 18:1040.

Mehta MP, Rodrigus P, Terhaard CH, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol 2003; 21:2529.

NCCN guidelines available at http://www.nccn.org.laneproxy.stanford.edu/professionals/physician_gls/f_guidelines.asp (Accessed on November 05, 2014).

Norris LK, Grossman SA, Olivi A. Neoplastic meningitis following surgical resection of isolated cerebellar metastasis: a potentially preventable complication. J Neurooncol 1997; 32:215

Patchell RA, Tibbs PA, Walsh JW, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990; 322:494.

Posner JB. Management of brain metastases. Rev Neurol (Paris) 1992; 148:477.

Saito R, Kumabe T, Jokura H, et al. Symptomatic spinal dissemination of malignant astrocytoma. J Neurooncol 2003; 61:227.

Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med 1975; 293:161

Siegal T, Lossos A, Pfeffer MR. Leptomeningeal metastases: analysis of 31 patients with sustained off-therapy response following combined-modality therapy. Neurology 1994; 44:1463.

Vecht CJ, Haaxma-Reiche H, Noordijk EM, et al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 1993; 33:583.

